
i 

  

  

Memory Forensics of Android 
Backdooring Based on App 
Virtualization 

Enrique Anthony Galea 
Supervisor: Dr. Mark Joseph Vella  
   

June 2023 

Submitted in partial fulfilment of the requirements 
for the degree of Computing Science. 



1 Introduction 

ii 

Abstract 

Smartphones have become ubiquitous in our daily lives, offering convenient access to 

our data, and making them an attractive target for cybercriminals. In fact, many 

different versions of Android backdoors have been developed and used to gain 

unauthorized access to users’ smartphones and their data. Although capable of 

detecting and defending against malware, mobile devices are limited in performing 

more advanced detection techniques due to their power constraints. As malware 

authors continue to use advanced evasion techniques, mobile devices have become 

increasingly vulnerable to sophisticated attacks. 

App virtualization is a technique that allows applications to run inside virtual 

environments created by other applications. In doing so, their visibility is hidden from 

other applications installed on the device. Such a technique can be potentially used by 

backdoors to evade detection and further enhance their stealth capabilities. By 

evading initial detection mechanisms, backdoors can more easily achieve objectives 

such as data exfiltration. 

In this paper, we propose VirtuSleuth, a tool in the form of an Android 

application that can detect virtualized applications and recover their code for analysis. 

Our tool analyses the running processes on the device, identifies those belonging to 

virtualized applications, and extracts their code from volatile memory. The proposed 

solution offers an effective approach for analysing virtualized applications as it targets 

the live memory where the virtualized application’s code must be loaded before it is 

executed. In doing so, we overcome app virtualization stealth and improve upon 

existing anti-malware solutions. 

We conduct experiments to compare the stealth level of Android backdoors 

when they are not virtualized versus when they are virtualized, using indicators of 

compromise as the measure. We also evaluate our tool to determine its level of 

accuracy in detecting virtualized applications and practicality in the time taken to 

detect virtualized applications and extract their code. Finally, we discuss the 

limitations of the tool and future work. 
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1 Introduction 

Smartphones are an integral part of our daily lives, providing us with convenient 

access to information and services. App stores have evolved as a vital component of 

the mobile platform, providing users with a trusted and convenient place for 

downloading and updating apps. With millions of applications available on the Google 

Play Store [1], users have access to a wide range of software for their devices. 

However, the open nature of the Android platform also means that threat actors can 

easily distribute malicious applications. Despite Google's efforts to keep the platform 

safe and secure, malicious applications still manage to slip through the cracks [2]. 

With the growing number of threats targeting individuals and organizations [3], anti-

malware applications have become important tools in keeping our devices and 

personal data protected. 

There is no shortage of anti-malware applications available [4], many of which 

can be found on the Google Play Store. Some are even included with the operating 

system itself, such as Google Play Protect [5]. In response to the increasing 

sophistication of malware [6], anti-malware applications have evolved to become 

more effective at detecting and removing different types of malware. As a result, 

modern anti-malware applications incorporate a variety of advanced techniques such 

as dynamic analysis, machine learning, cloud protection, and more [7]. In addition, 

most anti-malware applications offer real-time protection, continuously monitoring 

the system for threats and blocking them before they can cause any harm. However, 

such advanced features require continuous processing and elevated privileges to be 

able to function.  

1.1 Problem 

Mobile devices are inherently limited in terms of their processing power due to their 

portable nature. Combined with the limitations imposed by the Android operating 

system on user installed applications, these anti-malware applications are forced to 

operate with more limited capabilities compared to their desktop counterparts, while 

trying to achieve the same goal. For example, techniques involving dynamic analysis 

cannot be performed because applications are sandboxed and cannot monitor the 
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behaviour of other applications. However, even if these limitations were not present, 

such techniques would still not be viable since the continuous monitoring required 

would significantly impact performance and battery life. As a result, mobile anti-

malware applications primarily focus on providing basic protection against malicious 

applications in which malicious code is pre-embedded at the time of installation. 

However, these measures often fall short when dealing with more sophisticated 

instances of malware that dynamically load harmful code from external sources during 

runtime. Unfortunately, this means that users are left vulnerable to more 

sophisticated attacks. 

App virtualization is a technique that allows an Android application to run 

within a virtualized Android environment created by another application [8]. While 

this approach has legitimate uses, such as for testing and sandboxing, it has also been 

exploited for malicious purposes [9]. When an application is virtualized, anti-malware 

applications might not be able to detect it, as it is hidden from other installed 

applications. The use of app virtualization by backdoors, such as to virtualize a 

malicious application obtained from an external source during runtime, means that on-

device detection measures can be potentially evaded. Additionally, there is also the 

potential of circumventing the scanning conducted during submission to the Google 

Play Store, which is intended to compensate for weak on-device malware detection. 

1.2 Proposed Approach 

Figure 1.1 demonstrates a high-level overview of the problem. First, the user 

downloads a seemingly benign application with app virtualization capabilities. On 

installation, the application is analysed by any anti-malware applications on the device 

and not detected. Once launched by the user, the newly installed application fetches a 

malicious application from an external source. This malicious application is then 

virtualized, with its code being loaded inside volatile memory and not available to the 

anti-malware application. 
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Figure 1.1: Problem Overview 

To address the threat posed by app virtualization, we propose VirtuSleuth, a 

tool designed to detect and analyse virtualized Android applications. VirtuSleuth is an 

Android application that identifies virtualized application processes by examining the 

running processes on the device. Once identified, the bytecode of the virtualized 

application is extracted from memory. This effectively brings back the concealed 

components of virtualized applications, allowing them to be analysed for malware. 

1.3 Aims and Objectives 

The aim of this study is to determine how volatile memory forensics can be used to 

make stealthy, virtualized Android backdoors available again to malware detection 

engines. Our main objectives are to: 

1. Develop an Android application that virtualizes a known backdoor, demonstrating 

the potential for malicious exploitation. 

2. Develop a tool that can effectively detect virtualized Android backdoors and 

applications, showcasing the ability to counteract app virtualization stealth. 

3. Demonstrate the increased stealth of app virtualization by comparing the 

indicators of compromise (IOCs) generated by a backdoor when executed as a 

standard Android application versus when virtualized through the application 

developed in the second objective. 



1 Introduction 

4 

4. Evaluate the tool's feasibility and practicality by measuring the detection accuracy 

and the time taken for detection and extraction of bytecode. 

1.4 Organisation 

Chapter 2 lays the groundwork necessary for understanding our project. It explores 

the details of Android, app virtualization, backdoors, and more. The section also 

concludes with a review of past research that is related to our work. Chapter 3 delves 

into the intricacies of VirtuSleuth. Here, we detail its design, implementation, and the 

reasoning behind our design choices. By doing so, we provide insight into 

VirtuSleuth’s approach for detecting virtualized applications. In Chapter 4, we outline 

the evaluation strategies used to validate VirtuSleuth's effectiveness. This includes 

our experimental setup, results, and a discussion of VirtuSleuth's limitations. Finally, 

Chapter 5 provides a summary of our work and achieved objectives. The section also 

discusses potential enhancements to VirtuSleuth, identifying the areas where future 

research and development can improve the tool's compatibility, functionality, and 

more.
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2 Background and Related Work 

In this background section, we will explore the foundations necessary for 

understanding the context and challenges surrounding Android and virtualized 

applications. We will begin with an overview of Android's Linux foundation, discussing 

its role in providing key features such as sandboxing and memory mapping. Next, we 

will delve into the structure and components of Android applications, highlighting 

how they are built and distributed. We will then discuss the Android runtime, 

including the roles of DEX and OAT formats in application execution. After, we 

discuss app virtualization itself, detailing how applications are emulated by the 

technique. Finally, we will provide an overview of Android backdoors, mentioning the 

ways in which malware authors exploit the platform and how app virtualization can be 

leveraged as a novel attack vector. 

2.1 Android’s Linux Foundation 

Android is an open-source mobile operating system based on the Linux kernel [10]. As 

the foundation of the operating system, the Linux kernel enables Android to share 

many features and technologies with other Linux-based systems, such as multitasking 

capabilities and support for diverse hardware configurations. 

Leveraging the Linux kernel, Android provides strong isolation between 

applications through the use of a sandboxing mechanism, which prevents applications 

from accessing each other's data without explicit permission [11]. To achieve this, 

each application is assigned its own unique user during installation, and only this user 

is allowed to access the private memory and storage space of the application. This is 

combined with process isolation and restrictions on inter-process communication to 

effectively separate applications from each other. This design is shown in Figure 2.1. 
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Figure 2.1: Application Sandbox 

Another feature facilitated by the Linux kernel is the forking process used by 

Zygote. Forking is the creation of a new process by duplicating an existing one, which 

allows the child process to inherit properties, resources, and the environment of the 

parent process [12]. Zygote is an Android process that starts on boot and utilises 

forking to efficiently launch new applications by duplicating itself [13]. In this way, 

Zygote serves as a template process for all Android applications, ensuring that they 

inherit the necessary runtime environment and resources. 

Processes in Linux, including Android, have their own virtual address space that 

is divided into regions, each of which is associated with different permissions and 

content. Memory mapping allows these regions to be associated with specific files, 

allowing reading or writing to the file as if it were a part of its own memory. However, 

when a file is memory mapped, it isn't necessarily mapped entirely or contiguously. It 

can be fragmented across memory, with each fragment starting at a different offset. 

To view all the mapped regions of a specific process, one can examine the contents of 

/proc/[PID]/maps [15]. However, to inspect the memory mapping of a process, one 

must have the appropriate permissions. Typically, only the user that owns a process or 

the root user can examine the memory map of that process. 

Before executing an application, the associated code must be loaded into 

memory. This process is facilitated by specific file formats that are designed to be 
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straightforwardly mapped into different regions of the address space. On Linux-based 

systems, including Android, the Executable and Linkable Format (ELF) is used. ELF is a 

common standard file format for executables, object code, shared libraries, and core 

dumps. An ELF file is structured to enable easy memory mapping, consisting of a 

header, followed by program headers or section headers, or both. These headers 

provide necessary information to create a process's memory image, allowing a 

seamless transition from an on-disk file to an in-memory executable.  

2.2 Android Applications 

At the heart of Android's architecture lies the application framework, which exists 

alongside the native layer. This dual-layer structure allows developers to create 

applications using the Java and Kotlin programming languages, leveraging high-level 

APIs in the framework layer, as well as utilise low-level native code when needed [16]. 

Applications are built using a combination of four different components [17]. 

The most common component, activities, represent user interfaces associated with a 

single screen for user interaction. Services are background components that execute 

long-running operations or tasks without user interaction. Broadcast receivers allow 

an application to perform an action in response to a system-wide event or message. 

Lastly, content providers allow application to access shared data by other 

applications. 

Android applications are distributed as APK files. An APK file is simply an 

archive that contains all the necessary components for the installation and execution 

of an Android application [18]. The most important components of the APK file 

include the AndroidManifest.xml file and the classes.dex file. The 

AndroidManifest.xml file contains important metadata about the application, such as 

its package name, required permissions, and declared components. The classes.dex 

file holds the compiled bytecode of the application in the Dalvik Executable format. 

During installation, this file is copied to a directory that stores the compiled bytecode 

for every application on the device. When the application is started, the file is loaded 

into memory from this location and executed. The contents of an APK file are shown 

in Figure 2.2. 
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Figure 2.2: Android Package 

Beyond the Dalvik bytecode contained in the classes.dex file, Android 

applications can also include natively-compiled code to optimize performance or 

interface with system-level components. This code is stored in the 'lib/' directory 

within the APK file and is organized by the instruction set architecture (ARM, ARM64, 

x86, etc.) it's compiled for. This natively-compiled code, usually in the form of shared 

libraries, is written in languages like C or C++ and compiled directly to machine code.  

2.3 Android Runtime 

To run Java or Kotlin code inside Android applications, it must first be compiled into 

CLASS files, a format for bytecode that is executable by the Java VM, which 

interprets the bytecode and translates it into native machine code at runtime [19]. 

While this approach allows the same code to be compiled once to run on different 

architectures, it results in less efficient performance compared to native code. Due to 

the limited processing power and memory capacity available on mobile hardware 

during the time of Android's development, a customized runtime for the Android 

platform was developed, known as Dalvik [20]. Dalvik executes DEX files, which are 

compiled from CLASS files using the dx tool [21]. 

Although the Dalvik runtime addressed key limitations with using the Java VM 

at the time, it still came with other limitations, such as slower garbage collection 

algorithms. To address these limitations, Google introduced ART as the successor to 
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Dalvik [22]. The biggest difference of ART compared to Dalvik is that it executes 

applications AOT instead of JIT. ART compiles DEX files into OAT files that contain 

native instructions. This process is performed by the dex2oat tool during app 

installation and allows applications to execute faster while also consuming less power. 

OAT files are wrapped inside an ELF file. This allows the operating system to utilize 

existing mechanisms for loading and executing native code. Thus, each OAT file is 

essentially an ELF file that contains sections for the OAT-specific data as well as the 

original DEX bytecode. The original DEX files are still maintained due to JIT still being 

required in certain scenarios, such as when debugging an application. 

Different Android versions compile applications into different versions of the 

OAT file format. For example, Android 7.0 and 7.1 use version 79 of the OAT file 

format. This version is organized into various sections, including the OAT Header, 

DEX Files, OAT Classes, Garbage Collector, and various lookup tables [23]. These 

sections can be parsed to extract the native code of the application or the DEX files 

embedded within. Tools that parse OAT files, such as LIEF [24], are available for this 

purpose. Android Oreo and later also make use of VDEX files. VDEX files contain the 

uncompressed DEX code of the APK, with some additional metadata to speed up 

verification [57]. This allows for speedier app startup times at the cost of an additional 

layer of complexity to the process. An overview of the transformation process from 

Java to Dalvik bytecode is shown in Figure 2.3. 

 
Figure 2.3: Code Compilation Stages 
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2.4 App Virtualization 

App virtualization allows an application to emulate another application by setting up a 

virtual Android environment. In this context, the application setting up the virtual 

environment is referred to as the host application while the applications being 

emulated are referred to as plugin applications. The technique is easily maintainable 

and works across a variety of devices and configurations [25]. Integration into an 

existing project involves importing a library supporting app virtualization and calling a 

function to install and execute the plugin application inside the virtual environment. 

Multiple libraries supporting app virtualization exist, such as VirtualApp [25] and 

DroidPlugin [26]. 

The virtual Android environment includes emulated framework and native 

layers. The framework layer provides a virtualized Android framework that intercepts 

calls from the plugin applications and translates them to the corresponding methods, 

while the native layer provides a virtualized native layer that allows plugin 

applications to load native libraries and execute native code [25]. After the host 

application establishes the virtual environment, it forks its process into multiple 

processes, equivalent to the number of plugin applications it intends to run. Each 

plugin application shares the same UID as the host application but operates in its own 

distinct process. The host application can then compile the bytecode from the plugin 

application APK file into its private data directory and execute the plugin application. 

At this point, any requests sent by the plugin application are received from the 

host application by the Android OS. However, the host application does not know the 

names of the plugin application components it will emulate at compile time, so it is 

not able to include them inside its manifest. To address this, the host application 

declares several stub components inside its AndroidManifest.xml and uses dynamic 

code hooking to intercept each request and reply going towards to or coming from 

Android. Once intercepted, the names of plugin application components are 

dynamically changed to correspond to the stub components declared in the host 

application manifest. This is illustrated in Figure 2.4. For permissions, the host 

application simply declares all permissions so that any permissions declared by the 

plugin application will be provided. 
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Figure 2.4: App Virtualization Proxying 

VirtualApp (VA) provides an easy way to load an APK plugin through its API. To 

utilize VA in a project, one simply needs to include its library and invoke some 

methods in just a few lines of code. The 'installPackage' method is first called to install 

the APK in the virtual environment. This method returns an 'InstallResult' object, from 

which the package name can be extracted. To launch the installed APK, an intent is 

created using the 'getLaunchIntent' method, specifying the package name and a user 

identifier as arguments. Finally, the 'startActivity' method of 'VActivityManager' is 

called to initiate the plugin's main activity 

2.5 Android Backdoors 

Android backdoors are malicious applications that gain unauthorized access to a 

device and its data [27]. An attacker making use of a backdoor can gain unauthorized 

access to the device remotely, without the need for physical access. The backdoor 

could be an application itself or it might be included inside another application. 

Backdoor functions include data exfiltration, remote command execution, and system 

modifications [56]. While backdoors try to operate covertly, they must still interact 

with the Android operating system and its various APIs to carry out their activities. 

This interaction may leave traces in the form of IOCs. An IOC is simply any piece of 

information that can be used to identify potentially malicious activities within a 

system or network, such as unusual network traffic. Today's backdoors strive to 

minimize their IOCs and evade detection mechanisms through many techniques. 

An evasion technique employed by Android backdoors is the use of 

DexClassLoader. The DexClassLoader is a part of the Android application framework 
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and enables applications to load and execute DEX files dynamically at runtime [28]. 

Attackers can leverage the DexClassLoader to conceal malicious code by loading it 

dynamically during runtime, rather than bundling it with the application package. This 

makes the malicious code more difficult to detect through static analysis methods 

employed by anti-malware solutions, as the code is not present in the application's 

original binary. 

Another evasion technique is the use of Java Reflection. Reflection is a 

powerful feature of the Java programming language that allows developers to inspect, 

modify, and invoke methods and fields of objects during runtime [29]. Attackers 

exploit Java Reflection to obfuscate their malicious code by dynamically loading and 

invoking methods from other classes. This makes it more difficult for static analysis 

tools to identify the relationships between different components of the backdoor. 

Additionally, reflection can be used to modify the behaviour of existing code, enabling 

the attacker to inject malicious functionality into seemingly benign classes. 

App virtualization can be used as an attack vector for Android backdoors, 

providing several advantages. Since plugin applications are emulated and not installed 

on the device, they will not appear in the list of installed packages. Additionally, plugin 

applications can be started without user interaction and do not send 

ACTION_PACKAGE_ADDED broadcast receivers when installed in the virtual 

environment, meaning anti-malware applications making use of this component will 

not receive it. While the APKs of installed applications on the device can be found in 

/data/app, APKs of virtualized applications are stored in the private data directory of 

the host application instead, making them inaccessible to other applications for 

analysis due to the application sandbox. Lastly, app virtualization also enables the 

possibility of stealing plugin application private data due to the shared UID between 

host and plugin applications [30]. A malicious host application can emulate an 

application already installed on the device to impersonate the original and perform 

dynamic hooking to intercept and steal data. 
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2.6 Related Work 

2.6.1 Machine Learning Based Detection 

Machine learning-based detection techniques have been tested as a way to improve 

malware detection and classification. Studies such as those by G. Canfora et al. [31] 

and D.-J. Wu et al. [32] have proposed machine learning algorithms to identify and 

classify Android malware effectively. These methods typically rely on features 

extracted from the application package, dynamic analysis, or a combination of both. 

Additionally, the vast majority of anti-virus vendors today leverage machine learning 

in their security solutions [55]. While machine learning-based approaches can be 

effective in detecting malware, their efficacy in detecting virtualized malicious 

applications remains an open question. 

2.6.2 Anti-malware Evasion 

Many studies have already explored the subject of evading Android anti-malware 

applications, such as Rastogi et al. [33], Meng et al. [34], and Lars Richter [35]. 

However, these works have concentrated on employing code obfuscation techniques 

in repackaged malware to circumvent malware detection engines. In contrast, app 

virtualization offers an alternative method for evading anti-malware applications 

without resorting to code obfuscation or repackaging. Moreover, another form of 

evasion involves the use of firmware backdoors, such as Triada [54], where malicious 

actors embed malware directly into the device's firmware. However, this falls outside 

the scope of our study. 

2.6.3 App Repackaging 

Khanmohammadi et al. conduct an empirical study on repackaged Android 

applicationsa to gain insights into the factors that drive the spread of repackaged apps 

[36]. Repackaging an Android application requires the attacker to obtain and 

decompile the application package, reverse engineer it, modify the required 

components to change their behaviour, rebuild the application, and finally resign it. 

Repackaging an Android application is another way of delivering malware, but is 

different from app virtualization in that the malicious payload is bundled with the 

application.  
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2.6.4 App Virtualization 

Wu et al. [37] and Luo et al. [38] have developed frameworks that enable applications 

to detect whether they are being virtualized by utilizing timing measurements and 

runtime information respectively. Although our goal is to also detect virtualization, we 

must do so externally from the virtualized application in order to be able to scan for all 

applications that are being virtualized and extract the code from memory once they 

have been identified. 

Shi et al. [39] and Alecci et al. [40] explore the potential of app virtualization to 

generate new attack vectors on the Android operating system, such as the extraction 

of sensitive user data by taking advantage of the shared user ID of apps running 

within virtual environments. These studies present important examples of the ways in 

which attackers can utilise app virtualization after successfully installing a trojan on 

the user's device. 

Ruggia et al. use app virtualization to build a secure environment where apps 

can be checked at runtime to protect against repackaging [41]. Chen et al. [42] and 

Pizzi et al. [43] investigate how virtualization can be used to fix security vulnerabilities 

and deploy patches quickly, while Backes et al. [44] investigate how the technique can 

be used to safely sandbox Android applications to enable dynamic analysis and detect 

malicious behaviour. These studies provide additional insight into app virtualization 

but are not related to our work.  

2.6.5 Memory Forensics 

Mobile memory forensics tools and frameworks, such as LiME [45], have been 

developed to retrieve entire memory images of devices for analysis. However, 

utilizing LiME on an Android device requires that a kernel module used for memory 

extraction be compiled and loaded with the device kernel. Since kernels shipped with 

devices do not support module loading, the specific version of the kernel used on the 

device must be recompiled with module loading support and replaced. Additionally, 

dumping the entire memory contents of a device is unnecessary when only the partial 

memory contents used by a specific application is required in our case. While LiME 

could be used, it would be more complicated and less practical to do so compared to a 

more targeted approach that only extracts the required contents from memory. 
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2.6.6 Process Memory Analysis 

Process memory analysis has been used by Sanggeun Song et al. [46] to prevent 

Android ransomware attacks using statistical methods based on processor, memory, 

and I/O usage. The aim of their system is to detect processes with abnormal 

behaviours and stop them, while storing information about the suspicious processes 

in a database. Although their research focuses on ransomware detection, the process 

monitoring approach they propose shares similarities with our work in monitoring 

processes to detect virtualized applications. 

Saltaformaggio et al. [47] and Ali-Gombe et al. [48] employ process memory 

forensics techniques to reconstruct GUI components and runtime memory structures, 

enabling them to determine user activity from a device memory image. While this 

approach has the potential to identify the presence of virtualized applications, our 

focus is on detecting these applications while the process is running on the device to 

form part of a real-time detection setup. 

Bellizzi et al. explore the use of hooking applications to obtain timely captured 

memory dumps when specific calls or features are employed [49] [50], allowing for 

the analysis of memory images at a later stage in case evidence of a compromise is 

discovered. Although their research also utilises memory forensics to detect malicious 

activity, the scope of our study differs in that we concentrate on using memory 

forensics to extract virtualized application code. 

2.7 Conclusion 

This chapter laid the foundation for understanding the context around our work, 

including the structure of Android applications, the Android Runtime environment, 

app virtualization, and Android backdoors. An overview of related work in fields like 

anti-malware evasion, app virtualization, memory forensics, and process memory 

analysis was also discussed. This necessary groundwork sets the stage for the 

introduction of our tool, VirtuSleuth, which we will discuss in the next chapter. 
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3 VirtuSleuth Design 

In this section, our first two objectives will be addressed. Deriving its name from the 

words "virtualization" and "sleuth," VirtuSleuth embodies the concept of investigating 

virtualized applications by detecting virtualized application processes running on a 

device and extracting their bytecode from volatile memory for analysis. In doing so, 

we address the challenges related to the increased stealth provided by app 

virtualization. 

Figure 3.1 represents the stages involved in the virtualized application 

detection and extraction process. This section starts by detailing the development of 

an offensive solution, continues with a discussion of the design of every stage of the 

VirtuSleuth process, and ends with the design choices made during the development 

of VirtuSleuth. 
 

 
Figure 3.1: VirtuSleuth Process Flowchart 

3.1 Backdoor Virtualization 

An offensive solution was first created before starting development on the defensive 

solution. This involved creating an Android application that is capable of virtualizing a 

malicious Android backdoor using the VirtualApp (VA) library.  

The process began with incorporating the VA library into the host application 

project. The VA library offers an API that makes it easy to virtualize applications by 

requiring only the path to the APK on the internal storage of the device. We opted to 
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hardcode a path to an APK file in the downloads folder, allowing us to virtualize 

different applications by simply replacing the APK without having to rebuild the host 

application every time. 

With the Meterpreter APK in the specified path, the host application is 

programmed to install the APK using VA's installPackage() function. Following 

successful installation, the host application then utilized VA's getLaunchIntent() 

function to retrieve an Intent capable of launching the virtualized backdoor's main 

activity. This Intent was subsequently passed to VA's startActivity() function to initiate 

the execution of the backdoor in the virtual environment. 

With Meterpreter virtualized, the backdoor could operate and interact with the 

Android system as if it were a standalone application, while being masked by the host 

application's identity. There was also no indication that Meterpreter was being 

executed as the main activity of the backdoor does not provide a user interface, but 

we could still connect to the reverse shell established by Meterpreter and execute 

commands. 

The process of virtualizing Meterpreter was successful, meeting the project's 

objective of creating an offensive solution. This also served as a stepping stone for 

the development of the defensive counterpart, VirtuSleuth. By having a working 

model of a virtualized malicious application, we could accurately test VirtuSleuth's 

ability to detect and analyse such threats in a real-world scenario. 

3.2 Architecture 

Figure 3.2 provides a high-level depiction of VirtuSleuth's integration within a 

standard Android device setup. Installed as a typical Android application, VirtuSleuth 

operates in conjunction with any on-device anti-malware applications. Standard 

applications on the device are managed by the anti-malware applications, while 

VirtuSleuth is responsible for the detection of any stealthy virtualized applications. 

Upon detecting such applications, VirtuSleuth extracts their bytecode from volatile 

memory and analyses them for malware. 
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Figure 3.2: Solution Overview 

3.3 Initialisation 

VirtuSleuth exploits the fact that plugin applications run in a distinct process while 

sharing the same UID with the host application. By analysing running processes on 

the device and the corresponding users that started them, it is possible to identify 

virtualized processes. To analyse the processes on the device, two structures are 

required. The first is a map of users to processes, which allows easy grouping of users 

and their running processes. The second structure is a map of users to packages 

installed on the device, used to determine which packages share the same UID. 
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3.4 Process Scan 

Before identifying the virtualized processes, it is necessary to filter out instances 

where multiple processes owned by the same user are unrelated to app virtualization. 

The following scenarios were identified in which users may have multiple processes 

apart from app virtualization: 

• Packages with the same signature utilizing the sharedUserId manifest attribute. 

• Simultaneous operation of multiple components of the same applications. 

• Shell processes launched by the application. 

• Opening of files such as shared libraries. 

A copy of the map mapping users to processes is created, and these instances 

are identified and filtered out of this new copy. After doing so, any remaining users 

with more than one process indicate that these processes correspond to host and 

plugin applications. Subsequently, the host and plugin application processes can be 

discerned by verifying which process corresponds to a package already installed on 

the device. The pseudocode for this algorithm is listed in Algorithm 3.1. 
 

Algorithm 3.1 Virtualized Application Detection 

1: input user_processes_map, user_packages_map 
2: filtered_user_processes_map = copy(user_processes_map) 
3: for user, processes in filtered_user_processes_map.items(): 
4:     processes = filter_out_unwanted_processes(processes) 
5: for user, processes in filtered_user_processes_map.items(): 
6:     if len(processes) > 1: 
7:         plugin_process_pid = identify_plugin_process(processes) 

 

3.5 OAT File Extraction 

With the host and plugin application processes identified, the next step is to 

determine the location of the bytecode in memory so that it can be extracted. The 

memory-mapped files of the plugin application process are iterated through to 

determine mapped instances of the classes.dex file. Once all mapped instances are 

found, any duplicate instances are removed, and the remaining ones are sorted to be 

in sequential order. With the list of all mapped segments and their locations, these are 

dumped separately to internal storage and joined together. Algorithm 3.2 details the 

OAT file extraction process. 
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Algorithm 3.2 OAT File Extraction 

1: input plugin_app_pid 
2: mapped_files = executeCommand("cat /proc/" + plugin_app_pid + "/maps") 
3: mapped_dex_files = mapped_files.findMappedSequences('classes.dex') 
4: for each dex_file in mapped_dex_files: 
5:     extractMemory(plugin_app_pid, dex_file.start, dex_file.length) 
6: combine_dex_files() 

 

3.6 DEX File Extraction 

The classes.dex file extracted from memory is the compiled OAT for the virtualized 

application. Before the bytecode can be analysed, the DEX files need to be retrieved 

from the OAT file. There are several tools available that can parse OAT files and 

extract the embedded DEX files. However, these could not be used, as the last few 

hundred bytes of the OAT file are not mapped in memory, breaking the OAT file 

format and preventing the tools from recognizing the format. Since the DEX files are 

located at the beginning of the file, they are not missing and can be obtained by 

parsing the file manually instead. The parsing algorithm goes through the extracted 

OAT file and outputs the individual DEX files embedded within it to the same folder in 

internal storage. The sections of the OAT file relating to DEX files are illustrated in 

Figure 3.3. 

 
Figure 3.3: OAT File DEX Sections 
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The parsing algorithm must first determine the offsets of the embedded DEX 

files. This is done by reading the "dex_file_count" value from the OAT header and 

using this value to iterate over the next section of the file to determine the offset 

values of the DEX files. It then extracts these regions and saves them to internal 

storage. This process is described in Algorithm 3.3. 
 

Algorithm 3.3 DEX File Extraction 

1:    input plugin_application_pid 
2: mapped_files = get_mapped_files(plugin_application_pid) 
3: oat_file_name = find_classes_dex_file(mapped_files) 
4: oat_file_path = extract_oat_file_from_memory(oat_file_name) 
5: open(oat_file_path) 
6: skip_bytes(4096) 
7: verify_magic_value() 
8: verify_version_value() 
9: skip_bytes(12) 
10: dex_file_count = read_bytes(4) 
11: skip_bytes(44) 
12: key_store_size = read_bytes(4) 
13: skip_bytes(key_store_size) 
14: location_size = read_bytes(4) 
15: skip_bytes(location_size) 
16: skip_bytes(4) 
17: file_offset = read_bytes(4) 
18: skip_bytes(4) 
19: lookup_table_offset = read_bytes(4) 
20: for i in range(dex_file_count): 
21:     skip_bytes(4) 
22:     file_offset = read_bytes(4) 
23:     skip_bytes(4) 
24:     lookup_table_offset = read_bytes(4) 
25:     extract_bytes(file_offset, lookup_table_offset) 

 

3.7 DEX File Analysis 

Once the DEX files are obtained, the final step involves analysing them for malware. 

In our case, a classification is obtained by uploading the files to VirusTotal via their 

API, and the number of engines that classify the DEX file as malware is displayed on 

the screen after the analysis is completed. While we opted to use VirusTotal, any form 

of malware detection algorithm can be implemented here. 
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3.8 Design Choices 

While developing VirtuSleuth, various design choices were made to ensure the 

efficiency and effectiveness of the tool: 
 

• OAT File Extraction (Memory vs. Storage): The OAT file may also be found in the 

private data directory of the host application. However, accessing this directory is 

only possible with root access and would violate the sandbox model. Furthermore, 

there is no guarantee that the OAT file will remain in this directory post-

virtualization, as the host application can easily remove it. Thus, we opted to 

search memory, as code must be loaded there whenever it needs to be executed. 

• Memory Dumping (Full vs. Process Only): We could have obtained the full 

memory contents of the device using tools like LiME or dumped the contents of 

the virtualized process only. We chose the latter, as it is more straightforward and 

efficient. Using LiME involves recompiling the device kernel, which is a 

complicated and time-consuming process that introduces significant overhead. 

• Process Memory Extraction (dd vs. ptrace): To extract specific regions of memory 

of a process, we could use the dd tool to pull from /proc/[PID]/mem or ptrace to 

attach to the process and access its memory. In our testing, ptrace was found to 

be much faster than dd, as dd would only extract memory with a small buffer size. 

• DEX File Analysis (Local vs. Cloud): We opted to use the VirusTotal API for our 

tool, as it is simple to implement and this project is focused on the detection of 

virtualized applications. However, local scanning offers several advantages, such 

as independence from internet connectivity, faster results, and the capacity to 

customize or enhance the scanning process for this specific purpose. 

3.9 Conclusion 

In this chapter, we discussed the design details of VirtuSleuth. We began with the 

initialization process, moving on to the scanning of processes, and the extraction and 

analysis of OAT and DEX files. We provided descriptions of each stage, along with the 

rationale behind key design choices. Having understood the design of VirtuSleuth, the 

next chapter will provide the implementation specific details of certain parts of the 

tool. 
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4 VirtuSleuth Implementation 

In this section, we will go through the implementation specific details of VirtuSleuth 

for the relevant stages in the detection and extraction process. 

4.1 Initialisation 

The map of users to processes is created by parsing the output of the "ps" shell 

command to obtain the UID, PID, and name of every running process on the device. 

The use of the "ps" shell command is necessary because, with normal privileges, the 

application can only see its own processes. Thus, the app is set up with root privileges, 

allowing the application to execute shell commands. The map of users to packages is 

created by querying the value of the UID of every installed package on the device 

using the PackageManager. While dumpsys commands can also be used to determine 

the UID of an installed package, using framework APIs is much faster. 

4.2 Process Scan 

Instances of packages with the same UID are checked by using the map of users to 

packages that was created in the initialization stage. The rest of the scenarios can be 

determined by examining the name of the process in question. Processes of files or 

libraries are identified because they start with a forward slash and list the file or 

library's path. Processes of application components are identified because they start 

with the package name of the application, followed by a semicolon and the name of 

the component belonging to the process. Shell processes are identified because they 

are simply named "shell". 

4.3 OAT File Extraction 

To determine which files are mapped by the process, the contents of 

/proc/[PID]/maps are retrieved using the "cat" shell command and then parsed using 

regular expressions. To dump specific regions of process memory, a custom C 

program was written and compiled using the Android NDK. The C program uses 

ptrace to attach to the process and dump a portion of its memory to a file in internal 
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storage. While the C program could be executed with the JNI, it would result in the 

code executing under normal privileges. Since accessing the memory of another 

application requires root privileges, the program is included with the assets of the 

application and is copied to /data/local/tmp to be executed through shell commands 

when needed. 

4.4 DEX File Extraction 

File parsing is accomplished using a custom Java class. The class provides the 

necessary functionality needed across four functions, the first to open the file for 

parsing, another to skip a specified number of bytes forward, one to read the value of 

the next four bits as an unsigned integer, and a function that extracts a specified 

region of the file to internal storage.  

4.5 Conclusion 

In this section, we discussed the implementation specific details of VirtuSleuth. This 

information is useful to those interested in replicating the tool or any of the 

algorithms mentioned in the previous section. Having understood the design and 

implementation of VirtuSleuth, the next chapter will involve evaluating the efficacy of 

the tool and exploring its limitations. 
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5 Evaluation 

This section addresses the final two objectives of our study, and can be divided into 

two main parts: demonstrating the increased stealth provided by app virtualization 

and assessing the accuracy and practicality of VirtuSleuth. 

5.1 Experimentation Setup 

All experiments were conducted on a Windows 11 machine and the Android Studio 

x86 Android 7.0 emulator. For the Android backdoor, we opted for Meterpreter, an 

extensible payload within the Metasploit Framework penetration testing toolkit. 

Meterpreter is ideal due to its prevalence in real-world attacks and the importance of 

its detection for mobile device security. For the analysis of backdoor stealth, we 

utilised MobSF. MobSF is an automated mobile application security assessment 

framework capable of performing static and dynamic malware analysis. MobSF is ideal 

due to its features and widespread recognition in the mobile security community. 

5.2 App Virtualization Stealth 

Our methodology in evaluating backdoor stealth involves comparing standard 

backdoors with app virtualization-delivered backdoors in a sandbox environment to 

analyse IOCs. The MobSF sandbox tracks HTTP requests, Android framework API 

calls, system logs via logcat, and system state via dumpsys. In the context of Android, 

logcat is a command-line tool that offers a means to view and debug logs generated 

by the system and applications running on the device [51], while dumpsys is another 

command-line tool that enables the dumping of system state and diagnostic 

information about various system services and components [52]. We predict that the 

virtualized backdoor will exhibit less IOCs compared to the standard backdoor. 

We created two applications to represent both attack vectors. The first 

application is a plain Meterpreter application, generated using the MSFvenom [53] 

console and assigned the package name com.metasploit.stage. The second application 

consists of a single empty activity that virtualizes Meterpreter in the background. This 

application has a package name of com.example.trustedcontainervirtualapp and 

emulates com.metasploit.stage. 
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After executing both applications in the sandbox, we observed the following: 

• Network request and API call data were identical in both scenarios. This is 

expected since the API calls and network requests sent by the plugin application 

must be proxied by the host application, which is the application being analysed 

by the sandbox. 

• System logs showed the ActivityManager system service logging instances of 

starting and stopping the main activity of com.metasploit.stage in both scenarios. 

This outcome is expected because the host application, responsible for managing 

the lifecycle of the plugin application, must launch and terminate the plugin's main 

activity. 

• The dumpsys sections related to package, activity, and meminfo exhibited traces 

of com.metasploit.stage when the backdoor was delivered normally but not when 

virtualized. The absence of backdoor traces in these sections can be attributed to 

the fact that the virtualized application is not installed within the operating 

system. As a result, the system components responsible for monitoring installed 

applications do not track it. 

The aforementioned dumpsys sections list information about installed 

applications, running activities, and memory usage details for each running 

application. Figure 4.1 shows a sample of the dumpsys package output when the 

backdoor is installed as a standard application. The absence of virtualized backdoor 

activities in these sections make it more difficult for investigators to detect the 

presence of the malicious activity on the device as there are fewer IOCs to detect. 

This finding supports our hypothesis and establishes the increased stealth provided by 

app virtualization. 

 
Figure 5.1: Backdoor IOC 
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5.3 VirtuSleuth Evaluation 

In evaluating VirtuSleuth, our methodology focused on assessing the two most crucial 

aspects within the malware detection context: the accuracy in detecting virtualized 

application processes and the time taken for detection and bytecode extraction. Our 

setup involved virtualizing ten benign and ten malicious applications, measuring the 

time taken to detect the virtualized processes and extract their bytecode, as well as 

the number of engines that identified the bytecode as malicious. Tables 4.1 and 

Tables 4.2 present the results for the benign and malicious applications respectively. 

Table 4.1 Results of Benign Samples 

Application Version Time Taken 
(ms) 

VirusTotal 
Score 

Chrome 111.0.5563.58 824 1/60 

Discord 169.15 - Stable 1875 1/60 

Facebook 405.1.0.28.72 833 1/60 

Firefox 111.0 763 1/60 

Gmail 2023.02.19.515
548686.Release 

1263 1/60 

Instagram 274.0.0.26.90 1498 1/60 

MEGA 7.7 1201 1/60 

Messenger 400.0.0.11.9 1399 1/60 

Twitter 9.79.0-release.0 1958 1/60 

Whatsapp 2.23.5.78 950 1/60 

 

Table 4.2 Results of Malware Samples 

Application Version Time Taken 
(ms) 

VirusTotal 
Score 

BrazKing 3.0.0 645 8/60 

CopyCat 1 727 3/60 
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Application Version Time Taken 
(ms) 

VirusTotal 
Score 

CryptoStealer 1.2.0.3 621 8/61 

Ermac 1.0 632 7/60 

Meterpreter 1.0 625 21/61 

PhotoEditor 1.0.1 839 8/60 

PixStealer 1.4 702 16/60 

PremiumSMS 1.0 666 15/59 

Sova 1.0 770 9/61 

TaxPayer 1.0 672 13/60 

 

In all twenty instances, the tool correctly identified the process being 

virtualized. On average, the time needed to detect the process and obtain the DEX 

files was 973.15 milliseconds, and never surpassed two seconds. The swift detection 

and extraction of virtualized application bytecode results are highly promising, 

underscoring VirtuSleuth's potential for real-time deployment. In terms of malware 

detection, the average score for benign samples is 1 engine out of 60, likely due to 

false positives, while malware samples yielded a substantially higher average score of 

10.8 engines out of 60. This substantial increase for malware samples is not surprising 

as we are dealing with the raw application bytecode, which includes the malicious 

code sequences that can be recognized by malware detection engines. Overall, these 

results are very positive, and reinforce VirtuSleuth's practicality. 

5.4 Limitations 

While VirtuSleuth is effective in detecting and analysing virtual applications, it serves 

as a proof of concept with some limitations. Some of these limitations, such as the 

lack of automatic scanning, compatibility with only Android 7, and the requirement of 

internet connectivity for analysis, could be addressed if VirtuSleuth were to be 

offered as a product or service. However, some limitations are inherent to the 

process: 
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• Root Privileges: The tool requires root privileges to function. Obtaining root 

access on a device involves risks and some devices cannot be rooted. 

• Malware Execution: The virtual application must have already executed before it 

can be detected. This means that any potential damage caused by the malware 

may have occurred before the application is detected and stopped. 

• Android Developments: Android and ART are constantly evolving, which will 

necessitate ongoing research and maintenance. The parts most likely to require 

continuous updates are those that involve parsing of OAT files and extraction of 

DEX files, as these are tied to the specific versions of Android in use. 

• Post-Mortem Intrusion Detection: VirtuSleuth is not designed to perform post-

mortem analysis, such as through disk forensics with Autopsy. Without being able 

to identify attacks after they have occurred, it becomes difficult to determine 

extent of a breach retrospectively.  

The first limitation comes from the fact that elevated permissions are required 

to access the memory space of other applications and could be resolved if the 

application is bundled with the system. However, this can only be done by device 

vendors and requires firmware customisation. The second limitation is inherent to the 

fact that the virtualized process must be running for it to be detected. However, 

potential damages can be mitigated by analysing any system services that the 

malware has interacted with prior to detection, and implementing countermeasures to 

undo any potential damages. The third limitation is a characteristic of the ever-

evolving nature of technology and also affects other anti-malware applications and 

solutions. The fourth limitation relates to the fact that VirtuSleuth is not designed to 

conduct post-mortem analyses. Integrating complementary tools that are proficient in 

disk forensics or working on enhancing VirtuSleuth's capabilities for a more 

comprehensive intrusion detection approach could alleviate this issue. 

5.5 Conclusion 

This chapter was centred around evaluating the stealth of app virtualization and the 

efficacy of VirtuSleuth. While VirtuSleuth showed promising results, we also 

acknowledged its limitations. This analysis will help us understand where further 

development and research can be directed, a topic discussed in the next chapter.



 

30 

6 Conclusion 

In this study, we set forth with four key objectives aimed at exploring the potential of 

volatile memory forensics in combating stealthy, virtualized Android backdoors. We 

successfully developed an Android application capable of virtualizing a known 

backdoor, demonstrating the potential for malicious exploitation and addressing our 

first objective. We then achieved our second objective by creating VirtuSleuth, a 

defensive tool designed to counteract app virtualization stealth. The development of 

VirtuSleuth presented unique challenges in extracting virtualized process bytecode 

from volatile memory. We managed to overcome these challenges by utilizing native 

code for memory dumping and implementing a custom parsing algorithm for the 

extraction of DEX files. 

Our third objective involved demonstrating the increased stealth of app 

virtualization by comparing the IOCs generated by a backdoor when executed as a 

standard Android application versus when virtualized. Our findings showed a 

decrease in IOCs related to dumpsys logs, confirming app virtualization's increased 

stealth. Finally, we evaluated VirtuSleuth's feasibility and practicality by measuring the 

detection accuracy and the time taken for detection and extraction of bytecode, 

successfully fulfilling our fourth objective. VirtuSleuth not only detected every 

virtualized application, but never exceeded two seconds for the detection and 

subsequent extraction. Overall, the results were very positive, and show the tool's 

potential for real-time deployment.  

These positive outcomes highlight the potential benefits of incorporating 

volatile memory forensics in Android security frameworks, and our results serve as a 

stepping stone towards a future where malware detection engines can effectively 

counteract app virtualization stealth techniques. 

6.1 Future Work 

While the original objectives have been achieved, there is always room for further 

development and improvement. The scope of the malware detection capabilities can 

be broadened by incorporating more advanced detection techniques. For instance, 

machine learning algorithms could be applied at the bytecode analysis stage to enable 
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better pattern recognition of malicious activities and improve the classification 

accuracy of a wider variety of malware. 

Additionally, cross-platform compatibility could be explored. While our current 

focus has been on Android, app virtualization and related security issues are not 

limited to this platform. Expanding our tool's detection and analysis capabilities to 

other platforms such as Windows would significantly increase its applicability and 

impact. However, such an expansion would involve overcoming platform-specific 

challenges such as different file systems, binary formats, and system APIs. 

Finally, as app virtualization techniques continue to evolve, it will be crucial to 

stay ahead of these developments and adapt the tool accordingly. This might involve 

updating the detection algorithms to account for new virtualization methods, 

enhancing the DEX file extraction mechanism to support new Android versions, and 

exploring new strategies for identifying and mitigating the risks associated with app 

virtualization. 



 

32 

References 

[1] A. Turner, “How Many Apps In Google Play Store? (Apr 2023),” Feb. 17, 2022. 
https://www.bankmycell.com/blog/number-of-google-play-store-apps/ 

[2] “36 Malicious Android Apps Found on Google Play, Did You Install Them?,” 
PCMAG. https://www.pcmag.com/news/36-malicious-android-apps-found-on-
google-play-did-you-install-them 

[3] “Check Point Research: Third quarter of 2022 reveals increase in cyberattacks and 
unexpected developments in global trends,” Check Point Software, Oct. 26, 
2022. https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-
increase-in-cyberattacks/  

[4] “Comparison of antivirus software - Wikipedia,” en.wikipedia.org. 
https://en.wikipedia.org/wiki/Comparison_of_antivirus_software  

[5] “Play Protect,” Google Developers. https://developers.google.com/android/play-
protect  

[6] T. Burt, “Microsoft report shows increasing sophistication of cyber threats,” 
Microsoft on the Issues, Sep. 29, 2020. https://blogs.microsoft.com/on-the-
issues/2020/09/29/microsoft-digital-defense-report-cyber-threats/ 

[7] “Device protection in Windows Security,” support.microsoft.com. 
https://support.microsoft.com/en-us/windows/device-protection-in-windows-
security-afa11526-de57-b1c5-599f-3a4c6a61c5e2  

[8] “What is Application Virtualization? | VMware Glossary,” VMware, Jan. 20, 2022. 
https://www.vmware.com/topics/glossary/content/application-
virtualization.html 

[9] “Fake WhatsApp app downloaded more than one million times,” BBC News, Nov. 
06, 2017. Accessed: Dec. 11, 2022. [Online]. Available: 
https://www.bbc.com/news/technology-41886157  

[10] “Kernel overview,” Android Open Source Project. 
https://source.android.com/docs/core/architecture/kernel  

[11] “Application Sandbox,” Android Open Source Project. 
https://source.android.com/docs/security/app-sandbox  

[12] “fork(2) - Linux manual page,” man7.org. https://man7.org/linux/man-
pages/man2/fork.2.html 

[13] M. Ivanisevic, “What the Zygote!?,” Medium, Mar. 21, 2018. 
https://medium.com/@voodoomio/what-the-zygote-76f852d887d9 

[14] “Memory mapping — The Linux Kernel documentation,” linux-kernel-
labs.github.io. https://linux-kernel-
labs.github.io/refs/heads/master/labs/memory_mapping.html 

[15] "Understanding the Linux /proc/id/maps File," baeldung.com. 
https://www.nmapping — The Linux Kernel documentation,” linux-kernel-



 

33 

labs.github.io. https://linux-kernel-
labs.github.io/refs/heads/master/labs/memory_mapping.html 

[16] “Platform Architecture,” Android Developers. 
https://developer.android.com/guide/platform 

[17] “Application Fundamentals  |  Android Developers,” Android Developers, 2019. 
https://developer.android.com/guide/components/fundamentals 

[18] “apk (file format),” Wikipedia, Apr. 08, 2023. 
https://en.wikipedia.org/wiki/Apk_(file_format) 

[19] Wikipedia Contributors, “Java virtual machine,” Wikipedia, Apr. 24, 2019. 
https://en.wikipedia.org/wiki/Java_virtual_machine 

[20] “Dalvik (software),” Wikipedia, Feb. 23, 2023. 
https://en.wikipedia.org/wiki/Dalvik_(software) (accessed Apr. 13, 2023). 

[21] “Android - dx,” www.linuxtopia.org. 
https://www.linuxtopia.org/online_books/android/devguide/guide/developing/
tools/android_othertools_dx.html (accessed May 12, 2023). 

[22] “Android Runtime (ART) and Dalvik,” Android Open Source Project. 
https://source.android.com/docs/core/runtime 

[23] "oat_79.pdf," romainthomas.fr. https://romainthomas.fr/oat/oat_79.pdf 
(accessed Apr. 13, 2023). 

[24] “Home,” LIEF, Jul. 18, 2021. https://lief-project.github.io/ 

[25] Lody, “VA产品说明&开发指导,” GitHub, Apr. 13, 2023. 
https://github.com/asLody/VirtualApp/blob/master/README_eng.md 

[26] “Droid Plugin,” GitHub, Dec. 09, 2022. 
https://github.com/DroidPluginTeam/DroidPlugin 

[27] C. C. Editor, “backdoor - Glossary | CSRC,” csrc.nist.gov. 
https://csrc.nist.gov/glossary/term/backdoor 

[28] “DexClassLoader,” Android Developers. 
https://developer.android.com/reference/dalvik/system/DexClassLoader 
(accessed May 12, 2023). 

[29] “Using Java Reflection,” Oracle.com, 2018. https://www.oracle.com/technical-
resources/articles/java/javareflection.html 

[30] L. Zhang et al., “App in the Middle,” Proceedings of the ACM on Measurement 
and Analysis of Computing Systems, vol. 3, no. 1, pp. 1–24, Mar. 2019, doi: 
https://doi.org/10.1145/3322205.3311088. 

[31] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio, “Detecting Android 
malware using sequences of system calls,” Proceedings of the 3rd International 
Workshop on Software Development Lifecycle for Mobile, Aug. 2015, doi: 
https://doi.org/10.1145/2804345.2804349. 

[32] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “DroidMat: Android 
Malware Detection through Manifest and API Calls Tracing,” IEEE Xplore, Aug. 
01, 2012. https://ieeexplore.ieee.org/abstract/document/6298136/ 



 

34 

[33] V. Rastogi, Y. Chen, and X. Jiang, “Catch Me If You Can: Evaluating Android Anti-
Malware Against Transformation Attacks,” IEEE Transactions on Information 
Forensics and Security, vol. 9, no. 1, pp. 99–108, Jan. 2014, doi: 
https://doi.org/10.1109/tifs.2013.2290431. 

[34] G. Meng et al., “Mystique: Evolving Android Malware for Auditing Anti-Malware 
Tools,” doi: https://doi.org/10.1145/2897845.2897856. 

[35] L. Richter, “Common Weaknesses of Android Malware Analysis Frameworks.” 
Accessed: Apr. 07, 2023. [Online]. Available: 
https://ayeks.de/images/blog/2015-06-16-android-analysis-
frameworks/analysis_frameworks_paper.pdf 

[36] A. Ruggia, E. Losiouk, L. Verderame, M. Conti, and A. Merlo, “Repack Me If You 
Can: An Anti-Repackaging Solution Based on Android Virtualization,” Annual 
Computer Security Applications Conference, Dec. 2021, doi: 
10.1145/3485832.3488021.  

[37] Y. Wu, J. Huang, B. Liang, and W. Shi, “Do not jail my app: Detecting the Android 
plugin environments by time lag contradiction,” Journal of Computer Security, 
vol. 28, no. 2, pp. 269–293, Mar. 2020, doi: https://doi.org/10.3233/jcs-
191325. 

[38] T. Luo, C. Zheng, Z. Xu, and X. Ouyang, “ANTI-PLUGIN: DON’T LET YOUR APP 
PLAY AS AN ANDROID PLUGIN.” Available: 
https://paper.bobylive.com/Meeting_Papers/BlackHat/Asia-2017/asia-17-Luo-
Anti-Plugin-Don%27t-Let-Your-App-Play-As-An-Android-Plugin-wp.pdf 

[39] L. Shi, J. Fu, Z. Guo, and J. Ming, “‘Jekyll and Hyde’ is Risky,” Proceedings of the 
17th Annual International Conference on Mobile Systems, Applications, and 
Services, Jun. 2019, doi: https://doi.org/10.1145/3307334.3326072. 

[40] M. Alecci, R. Cestaro, M. Conti, K. Kanishka, and E. Losiouk, “Mascara: A Novel 
Attack Leveraging Android Virtualization,” arXiv:2010.10639 [cs], Oct. 2020, 
Available: https://arxiv.org/abs/2010.10639 

[41] A. Ruggia, E. Losiouk, L. Verderame, M. Conti, and A. Merlo, “Repack Me If You 
Can: An Anti-Repackaging Solution Based on Android Virtualization,” Annual 
Computer Security Applications Conference, Dec. 2021, doi: 
10.1145/3485832.3488021.  

[42] Y. Chen et al., “InstaGuard: Instantly Deployable Hot-patches for Vulnerable 
System Programs on Android,” Proceedings 2018 Network and Distributed 
System Security Symposium, 2018, doi: 
https://doi.org/10.14722/ndss.2018.23124. 

[43] Simeone Pizzi, “VirtualPatch: fixing Android security vulnerabilities with app-level 
virtualization,” thesis.unipd.it, 2022, Available: 
https://thesis.unipd.it/handle/20.500.12608/32823  

[44] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. Von Styp-Rekowsky, “Open 
access to the Proceedings of the 24th USENIX Security Symposium is sponsored 
by USENIX Boxify: Full-fledged App Sandboxing for Stock Android Boxify: Full-
fledged App Sandboxing for Stock Android.” Available: 



 

35 

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-
paper-backes.pdf 

[45] J. Sylve, "Lime-Linux memory extractor", in Proc. 7th ShmooCon Conf., 2012. 

[46] S. Song, B. Kim, and S. Lee, “The Effective Ransomware Prevention Technique 
Using Process Monitoring on Android Platform,” Mobile Information Systems, 
vol. 2016, pp. 1–9, 2016, doi: https://doi.org/10.1155/2016/2946735. 

[47] B. Saltaformaggio, R. Bhatia, Z. Gu, X. Zhang, and D. Xu, “GUITAR,” Computer 
and Communications Security, Oct. 2015, doi: 
https://doi.org/10.1145/2810103.2813650. 

[48] A. Ali-Gombe, S. Sudhakaran, A. Case, and G. Iii, “DroidScraper: A Tool for 
Android In-Memory Object Recovery and Reconstruction.” Accessed: Apr. 21, 
2023. [Online]. Available: https://www.usenix.org/system/files/raid2019-ali-
gombe.pdf 

[49] J. Bellizzi, M. Vella, C. Colombo, and J. Hernandez-Castro, “Responding to 
Targeted Stealthy Attacks on Android Using Timely-Captured Memory Dumps,” 
IEEE Access, vol. 10, pp. 35172–35218, 2022, doi: 
https://doi.org/10.1109/ACCESS.2022.3160531. 

[50] J. Bellizzi, M. Vella, C. Colombo, and J. C. Hernandez-Castro, “Real-Time 
Triggering of Android Memory Dumps for Stealthy Attack Investigation,” Lecture 
Notes in Computer Science, pp. 20–36, Nov. 2020, doi: 
https://doi.org/10.1007/978-3-030-70852-8_2. 

[51] “Logcat command-line tool | Android Studio,” Android Developers. 
https://developer.android.com/tools/logcat (accessed Apr. 13, 2023). 

[52] “dumpsys | Android Studio,” Android Developers. 
https://developer.android.com/tools/dumpsys (accessed Apr. 13, 2023). 

[53] “MSFvenom - Metasploit Unleashed,” OffSec. 
https://www.offsec.com/metasploit-unleashed/msfvenom/ 

[54] “Android malware ‘Triada’ has evolved to be incorporated into pre-shipped 
devices according to Google measures,” GIGAZINE, Jun. 07, 2019. 
https://gigazine.net/gsc_news/en/20190607-triada-found-phones-before-
shipped/ (accessed May 19, 2023). 

[55] “Hyperdetect,” Bitdefender. 
https://www.bitdefender.com/business/gravityzone-platform/hyperdetect.html 
(accessed May 19, 2023). 

[56] “Understanding Android Malware Families: Adware and Backdoor (Article 5) - IT 
World Canada,” www.itworldcanada.com, Jun. 01, 2021. 
https://www.itworldcanada.com/blog/understanding-android-malware-families-
part-5-adware-backdoor/447798 

[57] “Configuring ART,” Android Open Source Project. 
https://source.android.com/docs/core/runtime/configure 

 

https://www.offsec.com/metasploit-unleashed/msfvenom/

	1 Introduction
	1.1 Problem
	1.2 Proposed Approach
	1.3 Aims and Objectives
	1.4 Organisation

	2 Background and Related Work
	2.1 Android’s Linux Foundation
	2.2 Android Applications
	2.3 Android Runtime
	2.4 App Virtualization
	2.5 Android Backdoors
	2.6 Related Work
	2.6.1 Machine Learning Based Detection
	2.6.2 Anti-malware Evasion
	2.6.3 App Repackaging
	2.6.4 App Virtualization
	2.6.5 Memory Forensics
	2.6.6 Process Memory Analysis

	2.7 Conclusion

	3 VirtuSleuth Design
	3.1 Backdoor Virtualization
	3.2 Architecture
	3.3 Initialisation
	3.4 Process Scan
	3.5 OAT File Extraction
	3.6 DEX File Extraction
	3.7 DEX File Analysis
	3.8 Design Choices
	3.9 Conclusion

	4 VirtuSleuth Implementation
	4.1 Initialisation
	4.2 Process Scan
	4.3 OAT File Extraction
	4.4 DEX File Extraction
	4.5 Conclusion

	5 Evaluation
	5.1 Experimentation Setup
	5.2 App Virtualization Stealth
	5.3 VirtuSleuth Evaluation
	5.4 Limitations
	5.5 Conclusion

	6 Conclusion
	6.1 Future Work


